Oxidizing agent are those species which oxidizes others and itself gets reduced during a chemical reaction.Reducing agent are those species which reduces others and itself gets oxidized during a chemical reaction.
According to Electronic theory, oxidizing agent are those species which oxidizes others by accepting the electrons lost and reducing agent are those species which reduces other by giving electrons.
Oxidizing agent
Oxidizes othersItself gets reducedElectrons are accepted
Reduction agent
Reduces othersItself gets oxidizedElectrons are donated
Atoms, ions, and molecules that have an unusually large affinity for electrons tend to be good oxidizing agents. Elemental fluorine, for example, is the strongest common oxidizing agent. F2 is such a good oxidizing agent that metals, quartz, asbestos, and even water burst into flame in its presence. Other good oxidizing agents include O2, O3, and Cl2, which are the elemental forms of the second and third most electronegative elements, respectively.
Another place to look for good oxidizing agents is among compounds with unusually large oxidation states, such as the permanganate (MnO4-), chromate (CrO42-), and dichromate (Cr2O72-) ions, as well as nitric acid (HNO3), perchloric acid (HClO4), and sulfuric acid (H2SO4). These compounds are strong oxidizing agents because elements become more electronegative as the oxidation states of their atoms increase.
Good reducing agents include the active metals, such as sodium, magnesium, aluminum, and zinc, which have relatively small ionization energies and low electro-negativities. Metal hydrides, such as NaH, CaH2, and LiAlH4, which formally contain the H- ion, are also good reducing agents.
Some compounds can act as either oxidizing agents or reducing agents. One example is hydrogen gas, which acts as an oxidizing agent when it combines with metals and as a reducing agent when it reacts with nonmetals.
2 Na(s) + H2(g) 2 NaH(s) |
H2(g) + Cl2(g) 2 HCl(g) |
Another example is hydrogen peroxide, in which the oxygen atom is in the -1 oxidation state. Because this oxidation state lies between the extremes of the more common 0 and -2 oxidation states of oxygen, H2O2 can act as either an oxidizing agent or a reducing agent.
Comments
Post a Comment